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Abstract
A transform between functions in R and functions in Zd is used to
define the analogue of number and coherent states in the context of finite
d-dimensional quantum systems. The coherent states are used to define an
analytic representation in terms of theta functions. All states are represented
by entire functions with growth of order 2, which have exactly d zeros in each
cell. The analytic function of a state is constructed from its zeros. Results
about the completeness of finite sets of coherent states within a cell are derived.

PACS numbers: 03.65.Ca, 42.50.Dv

1. Introduction

Quantum systems with finite Hilbert space have been studied originally by Weyl and Schwinger
[1] and later by many authors [2, 3]. A formalism analogous to the harmonic oscillator can
be developed where the dual variables that we call ‘position’ and ‘momentum’ take values
in Zd (the integers modulo d). This area of research is interesting in its own right; and has
many applications in areas such as quantum optics, quantum computing [4], two-dimensional
electron systems in magnetic fields and the magnetic translation group [5], the quantum Hall
effect [6], quantum maps [7], hydrodynamics [8] mathematical physics and signal processing,
etc. For a review see [9].

In this paper we introduce a transform from functions in R to functions in Zd . This is
related to Zak transform from functions in R to functions on a circle [10–12]; but of course
here we have functions in ‘discretized circle’. This transform enables us to transfer some of
the harmonic oscillator formalism into the context of finite systems. For example, we define
the analogues of number states and coherent states. Coherent states in the context of finite
systems have been previously considered in [13, 14].

Coherent states can be used to define analytic representations. For example, ordinary
coherent states of the harmonic oscillator can be used to define the Bargmann analytic
representation in the complex plane; SU(1, 1) coherent states can be used to define analytic
representations in the unit disc (Lobachevsky geometry); SU(2) coherent states can be used to
define analytic representations in the extended complex plane (spherical geometry). We use
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the coherent states in the context of finite systems to define analytic representations. Similar
analytic representations have been used in the context of quantum maps in [13]. We show that
the corresponding analytic functions obey doubly periodic boundary conditions; and therefore
it is sufficient to define them on a square cell S. Each of these analytic functions has growth of
order 2 and has exactly d zeros in S.

We use the analytic formalism to study the completeness of finite sets of coherent states
in the cell S. This discussion is the analogue in the present context, of the ‘theory of von
Neumann lattice’ for the harmonic oscillator [15–18], which is based on the theory of the
density of zeros of analytic functions [19].

In section 2, we review briefly the basic theory of finite systems and define some quantities
for later use. In section 3, we introduce the transform between functions in R and functions
in Zd . Using this transform we define in section 4 number states and coherent states in our
context of finite systems, and study their properties. In section 5, we use the coherent states
to define an analytic representation in terms of theta functions. We show that the order of
the growth of these entire functions is 2. We also study displacements and the Heisenberg–
Weyl group in this language. In section 6, we study the zeros of the corresponding analytic
functions and use them to study the completeness of finite sets of coherent states within a cell.
In section 7, we construct the analytic representation of a state from its zeros. We conclude in
section 8 with the discussion of our results.

2. Finite quantum systems

2.1. Position and momentum states and Fourier transform

We consider a quantum system with a d-dimensional Hilbert space H. We use the notation
|s〉〉 for the states in H; and we use the notation |s〉 for the states in the infinite-dimensional
Hilbert space H associated with the harmonic oscillator. Let |X;m〉〉 be an orthonormal basis
in H, where m belongs to Zd . We refer to them as ‘position states’. The X in the notation is
not a variable but it simply indicates position states.

The finite Fourier transform is defined as

F = d−1/2
∑
m,n

ω(mn)|X;m〉〉〈〈X; n|; ω(α) = exp

(
i
2πα

d

)
(1)

FF † = F †F = 1; F 4 = 1. (2)

Using the Fourier transform we define another orthonormal basis, the ‘momentum states’, as

|P ;m〉〉 = F |X;m〉〉 = d−1/2
d−1∑
n=0

ω(mn)|X; n〉〉. (3)

We also define the ‘position and momentum operators’ x and p as

x =
d−1∑
n=0

n|X; n〉〉〈〈X; n|; p =
d−1∑
n=0

n|P ; n〉〉〈〈P ; n|. (4)

It is easily seen that

FxF † = p; FpF † = −x. (5)
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2.2. Displacements and the Heisenberg–Weyl group

The displacement operators are defined as

Z = exp

(
i
2π

d
x

)
; X = exp

(
−i

2π

d
p

)
(6)

Xd = Zd = 1; XβZα = ZαXβω(−αβ) (7)

where α, β are integers in Zd . They perform displacements along the P and X axes in the
X–P phase space. Indeed we can show that

Zα|P ;m〉〉 = |P ;m + α〉〉; Zα|X;m〉〉 = ω(αm)|X;m〉〉 (8)

Xβ |P ;m〉〉 = ω(−mβ)|P ;m〉〉; Xβ |X;m〉〉 = |X;m + β〉〉. (9)

The X–P phase space is the toroidal lattice Zd × Zd .
The general displacement operators are defined as

D(α, β) = ZαXβω(−2−1αβ); [D(α, β)]† = D(−α,−β). (10)

It is easy to see

D(α, β)|X;m〉〉 = ω(2−1αβ + αm)|X;m + β〉〉
D(α, β)|P ;m〉〉 = ω(−2−1αβ − βm)|P ;m + α〉〉.

(11)

We next consider an arbitrary (normalized) state |s〉〉

|s〉〉 =
d−1∑
m=0

sm|X;m〉〉;
d−1∑
m=0

|sm|2 = 1 (12)

and act with the displacement operators to get the states

|s;α, β〉〉 ≡ D(α, β)|s〉〉 =
d−1∑
m=0

smω(2−1αβ + αm)|X;m + β〉〉. (13)

Clearly |s; 0, 0〉〉 = |s〉〉. Using equations (8) and (9) we easily show that

d−1
d−1∑

α,β=0

|s;α, β〉〉〈〈s;α, β| = 1d . (14)

This shows that the states |s;α, β〉〉 (for a fixed ‘fiducial’ state |s〉〉 and all α, β in Zd ) form an
overcomplete basis of d2 vectors in the d-dimensional Hilbert space H. Equation (14) is the
resolution of the identity.

2.3. General transformations

In this section we expand an arbitrary operator �, in terms of displacement operators. In order
to do this we first define its Weyl function as

W̃�(α, β) = Tr[�D(α, β)]. (15)

The properties of the Weyl function and its relation to the Wigner function is discussed in [9].
We can prove that

� = d−1
d−1∑

α,β=0

W̃�(−α,−β)D(α, β). (16)
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3. A transform between functions in R and functions in Zd

In this section we introduce a map between states in the infinite-dimensional harmonic
oscillator Hilbert space H and the d-dimensional Hilbert space H. This map is a special
case of the Zak transform. We consider a state |ψ〉 in H with (normalized) wavefunction in
the x-representation ψ(x) = 〈x|ψ〉. The corresponding state |ψ〉〉 in H is defined through
the map

ψm = 〈〈X;m|ψ〉〉 = N−1/2
∞∑

w=−∞
ψ

[
x =

(
2π

d

)1/2

λ(m + dw)

]
; ψm+d = ψm (17)

where m ∈ Zd . N is a normalization factor so that
∑d−1

m=0 |ψm|2 = 1 which is given in
appendix A. The Fourier transform (on the real line) of ψ(x) is defined as

ψ̃(p) = (2π)−1/2
∫ ∞

−∞
ψ(x) exp(−ipx) dx. (18)

Using the map of equation (17) we define

ψ̃m = N ′−1/2
∞∑

w=−∞
ψ̃

[
p =

(
2π

d

)1/2 1

λ
(m + dw)

]
. (19)

The tilde in ψ̃ indicates that the Fourier transform of ψ(x) has been transformed according
to equation (18). The normalization factor N ′ is given in appendix A where it is shown that
N ′ = λ2N .

We next prove that

ψ̃m = d−1/2
d−1∑
n=0

ω(−mn)ψn = 〈〈P ;m|ψ〉〉. (20)

This shows that ψ̃m is the finite Fourier transform of ψn, and therefore the tilde also indicates
the above finite Fourier transform. So the tilde in the notation is used for two different Fourier
transforms, but they are consistent to each other.

In order to prove equation (20) we insert equation (17) into equation (20) and use the
Poisson formula

∞∑
w=−∞

exp(i2πwx) =
∞∑

k=−∞
δ(x − k), (21)

where the right-hand side is the ‘comb delta function’; and also the relation

1

d

d−1∑
m=0

ω[m(k − 	)] = δ(k, 	); k, 	 ∈ Zd (22)

where δ(k, k′) is a Kronecker delta. These two relations are useful in many proofs in this
paper.

The above map is not one-to-one (the Hilbert space H is infinite dimensional while
the Hilbert space H is d-dimensional). Therefore, equation (17) cannot be inverted. In
appendix B, we use the full Zak transform and introduce a family of d-dimensional Hilbert
spaces H(σ1, σ2) with twisted boundary conditions. We show that the Hilbert space H is
isomorphic to the direct integral of all the H(σ1, σ2) (with 0 � σ1 < 1, 0 � σ2 < 1) and then
an inverse to the relation (17) can be found. However, the formalism of this paper is valid only
for H ≡ H(0, 0) (which has periodic boundary conditions).
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Table 1. Eigenvectors of the Fourier operator F with d = 6.

|0〉〉 |1〉〉 |2〉〉 |3〉〉 |4〉〉 |6〉〉
0.759 71 0 −0.525 46 0 0.370 40 −0.314 49
0.450 04 0.653 28 0.340 71 −0.270 59 −0.378 23 0.285 78
0.093 73 0.270 60 0.481 31 0.653 28 0.374 71 −0.158 03
0.013 65 0 0.168 51 0 0.543 93 0.829 34
0.093 73 −0.270 60 0.481 31 −0.653 28 0.374 71 −0.158 03
0.450 04 −0.653 28 0.340 71 0.270 59 −0.378 23 0.285 78

4. Quantum states

4.1. Number eigenstates

In the harmonic oscillator, number states are eigenstates of the Fourier operator exp(ia†a)

where a, a† are the usual annihilation and creation operators. In this section we apply the
transformation of equation (17) with λ = 1 and we show that the resulting states are eigenstates
of the Fourier operator of equation (1).

We consider the harmonic oscillator number eigenstates |N〉 whose wavefunction is

χ(x,N) = 〈x|N〉 =
(

1

π1/22NN !

)1/2

exp

(
−1

2
x2

)
HN(x) (23)

where HN(x) are Hermite polynomials.
It is known that

χ̃ (x,N) = iNχ(x,N). (24)

Using the transforms of equations (17) and (19) with λ = 1, we find

χm(N) = 〈〈X;m|N〉〉 = Nn(N)−1/2
∞∑

w=−∞
χ

[
x = (m + dw)

(
2π

d

)1/2

, N

]
, (25)

χ̃m(N) = 〈〈P ;m|N〉〉 = Nn(N)−1/2
∞∑

w=−∞
χ̃

[
x = (m + dw)

(
2π

d

)1/2

, N

]
, (26)

where Nn(N) is the normalization factor for number eigenstates, given by equation (A.1) with
ψ replaced by χ . Equation (24) implies that

χ̃m(N) = iNχm(N). (27)

Using this in conjunction with equation (20) we prove that

d−1/2
d−1∑
n=0

ω(−mn)χn(N) = iNχm(N); → F |N〉〉 = iN |N〉〉. (28)

Therefore the vectors χm(N) are eigenvectors of the Fourier matrix. They have been studied
in the context of signal processing in [20]. Of course, the Fourier matrix is finite and only d
of these eigenvectors are linearly independent. Therefore, the set of all states |N〉〉 is highly
overcomplete. In general, the number states |N〉〉 are not orthogonal to each other.

The Fourier matrix has four eigenvalues ik (0 � k � 3); and all the states |N = 4M + k〉〉
correspond to the same eigenvalue ik . As an example, we consider the case d = 6 and using
equation (25) we calculate the six eigenvectors. Results are presented in table 1 (we note that
|5〉〉 = −|1〉〉).



8354 S Zhang and A Vourdas

4.2. Coherent states

We consider the harmonic oscillator coherent states |A〉 whose wavefunction is

ψ(x,A) = 〈x|A〉 = π−1/4 exp
(− 1

2x2 + Ax − 1
2ARA

)
, (29)

where A = AR + iAI . Using the transformation of equation (17) we introduce coherent states
|A〉〉 in the finite Hilbert space as

ψm(A) = 〈〈X;m|A〉〉 = NC(A)−1/2π−1/4 exp

[
−πλ2m2

d
+ Amλ

(
2π

d

)1/2

− 1

2
ARA

]

× �3

[
iπmλ2 − iAλ

(
dπ

2

)1/2

; idλ2

]

= NC(A)−1/2π−1/4d−1/2λ−1 exp
( i

2
AIA

)
· �3

[
πm

d
− A

λ

( π

2d

)1/2
; i

dλ2

]
, (30)

where �3 are theta functions [21], defined as

�3(u; τ) =
∞∑

n=−∞
exp(iπτn2 + i2nu), (31)

and the relation

�3(u; τ) = (−iτ)−1/2 exp

(
u2

π iτ

)
· �3

(
u

τ
;− 1

τ

)
(32)

has been used in equation (30). The normalization factor, in the case of even dimension
d = 2k, is

NC(A) =
(

d

2π

)1/2

λ−1 · �3

[
AIλ

(
πd

2

)1/2

; idλ2

2

]
· �3

[
AR

λ

(
πd

2

)1/2

; id

2λ2

]
(33)

and in the case of odd dimension d = 2k + 1 it is

NC(A) =
(

d

2π

)1/2

λ−1 · �3

[
AIλ

(
πd

2

)1/2

; idλ2

2

]
· �3

[
AR

λ
(2πd)1/2; 2id

λ2

]
. (34)

Equations (33) and (34) can be written in the single form

NC(A) =
(

d

2π

)1/2

λ−1 · �3

[
AIλ

(
πd

2

)1/2

; idλ2

2

]

×�3

[
AR

λ

(
4πd

5 + 3(−1)d

)1/2

; 4id

[5 + 3(−1)d ]λ2

]
. (35)

The ψm(A) obeys the relations

ψm[A + (2πd)1/2λ] = ψm(A) exp

[
iAIλ

(
πd

2

)1/2
]

;

ψm

[
A + i

(2πd)1/2

λ

]
= ψm(A) exp

[
−i

AR

λ

(
πd

2

)1/2
]

.

(36)

The zeros of the theta function �3(u; τ) are given by

u = (2k + 1)
π

2
+ (2l + 1)

πτ

2
, (37)
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where k, l are integers. Therefore,

ψm(Akl) = 〈〈X;m|Akl(m)〉〉 = 0; Akl(m) =
(

2π

d

)1/2 [(
kd +

d

2
+ m

)
λ +

(2l + 1)i

2λ

]
.

(38)

It is seen that the states |Akl(m)〉〉 are orthogonal to the position states |X;m〉〉.
The ‘vacuum state’ |0〉〉 is defined as

〈〈X;m|0〉〉 = NC(0)−1/2π−1/4d−1/2 · �3

(πm

d
; i

dλ2

)
, (39)

where

NC(0) =
(

2d

π

)1/2

λ−1 · �3

(
0; idλ2

2

)
�3

(
0; 4id

[5 + 3(−1)d ]λ2

)
. (40)

The coherent states |A〉〉 satisfy the following resolution of the identity:

λ(2πd)−1/2
∫

S

d2ANC(A)|A〉〉〈〈A| = 1d;

S = [
a, a + (2πd)1/2λ

)
R

×
[
b, b +

(2πd)1/2

λ

)
I

.

(41)

We integrate here over the cell S. The periodicity of equation (36) implies that the cell can be
shifted everywhere in the complex plane and this is indicated with the arbitrary real numbers
a, b. The proof of equation (41) is based on the resolution of the identity for ordinary (harmonic
oscillator) coherent states, in conjunction with the map of equation (17).

The set of all coherent states in the cell S is highly overcomplete. Indeed using
equation (14) we easily show another resolution of identity which involves only d2 coherent
states in the cell S:

d−1
d−1∑

α,β=0

∣∣∣∣∣A +

(
2π

d

)1/2 (
βλ +

α

λ
i

)〉〉 〈〈
A +

(
2π

d

)1/2 (
βλ +

α

λ
i

)∣∣∣∣∣ = 1d . (42)

The overlap of two coherent states is

〈〈A1|A2〉〉 =
(

d

2π

)1/2

λ−1NC(A1)
−1/2NC(A2)

−1/2 exp

(
−1

4
|A1|2 − 1

4
|A2|2 +

1

2
A∗

1A2

)

×�3

[
i(A2 − A∗

1)λ

(
πd

8

)1/2

; idλ2

2

]

×�3

[
A2 + A∗

1

λ

(
πd

5 + 3(−1)d

)1/2

; 4id

[5 + 3(−1)d ]λ2

]
. (43)

The first theta function in the above relation is zero when

A2 − A∗
1 =

(
l +

1

2

)
(2πd)1/2λ + i(2k + 1)

(
2π

d

)1/2

λ−1 (44)

and the second is zero when

A2 + A∗
1 =

(
[5 + 3(−1)d ]π

4d

)1/2

λ(2k + 1) +

(
4πd

5 + 3(−1)d

)1/2

λ−1(2l + 1)i. (45)

The corresponding coherent states in these two cases are orthogonal to each other.
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There is a relation between the coherent states in a finite Hilbert space studied in this
section and the number states studied earlier:

|A〉〉 = exp

(
−|A|2

2

) ∞∑
N=0

AN

√
N !

[
Nn(N)

NC(A)

]1/2

|N〉〉. (46)

This is analogous to the relation between coherent states and number states in the infinite-
dimensional Hilbert space for the harmonic oscillator. We have explained earlier that only d
of the number states appearing in the right-hand side of equation (46) are independent.

Introducing the displacement operator defined in equation (10), we can prove that

D(α, β)|A〉〉 =
∣∣∣∣∣A +

(
2π

d

)1/2

(βλ + αλ−1i)

〉〉
exp

[
−iAIλ

( π

2d

)1/2
β + iARλ−1

( π

2d

)1/2
α

]
,

(47)

where both α and β are integers. We might be tempted to use the above equation as a definition
for displacement operators with real values of α, β. It can be shown that in this case D depends
on A; and only for integer α, β the D is independent of A.

5. Analytic representation

5.1. Quantum states

Let |f 〉〉 be an arbitrary (normalized) state

|f 〉〉 =
d−1∑
m=0

fm|X;m〉〉;
d−1∑
m=0

|fm|2 = 1. (48)

We shall use the notation

|f ∗〉〉 =
d−1∑
m=0

f ∗
m|X;m〉〉; 〈〈f | =

d−1∑
m=0

f ∗
m〈〈X;m|; 〈〈f ∗| =

d−1∑
m=0

fm〈〈X;m|. (49)

We define the analytic representation of |f 〉〉 as

f (z) ≡ NC(z)1/2d1/2λ exp
(
− i

2
zI z

)
〈〈z∗|f 〉〉

= π−1/4
d−1∑
m=0

�3

[
πm

d
− z

λ

( π

2d

)1/2
; i

dλ2

]
fm (50)

where |z〉〉 is a coherent state. It is easy to see

f [z + (2πd)1/2λ] = f (z); f [z + i(2πd)1/2λ−1] = f (z) exp

[
πd

λ2
− i(2πd)1/2zλ−1

]
.

(51)

The f (z) is an entire function. If M(R) is the maximum modulus of f (z) for |z| = R, then

ρ = lim
R→∞

sup
ln ln M(R)

ln R
(52)

is the order of the growth of f (z) [19]. It is easily seen that in our case the order of the growth
is ρ = 2.

Due to the periodicity our discussion below is limited to a single cell S (defined in
equation (41)). The scalar product is given by

〈〈f ∗|g〉〉 = (2π)−1/2d−3/2λ−1
∫

S

d2z exp
(−z2

I

)
f (z)g(z∗). (53)
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As special cases, we derive the analytic representations of the position states:

|X;m〉〉 → π−1/4 · �3

[
πm

d
− zλ−1

( π

2d

)1/2
; i

dλ2

]
, (54)

momentum states:

|P ;m〉〉 → λπ−1/4 exp

(
−1

2
z2

)
· �3

[
πm

d
− λzi

( π

2d

)1/2
; iλ2

d

]
(55)

and the coherent states:

|A〉〉 → f (z,A) = d

[
2

πNC(A)

]1/2

exp

(
−1

4
z2 +

1

2
Az − 1

4
|A|2

)

×�3

[
i(A − z)λ

(
πd

8

)1/2

; idλ2

2

]

×�3

[
(A + z)λ−1

(
πd

5 + 3(−1)d

)1/2

; 4id

[5 + 3(−1)d ]λ2

]
. (56)

5.2. Displacements and the Heisenberg–Weyl group

In this section we express the displacement operators X and Z in the context of analytic
representations. Equations (9) and (8) are written as

Xf (z) = f

[
z −

(
2π

d

)1/2

λ

]
;

Zf (z) = f

[
z + i

(
2π

d

)1/2

λ−1

]
exp

[
izλ−1

(
2π

d

)1/2

− π

dλ2

]
.

(57)

Therefore, X and Z are given by

X = exp

[
−

(
2π

d

)1/2

λ∂z

]

Z = exp

[
izλ−1

(
2π

d

)1/2

− π

dλ2

]
exp

[
i

(
2π

d

)1/2

λ−1∂z

] (58)

and the general displacement operator is

D(α, β) = ω(−2−1/2αβ) exp

[
iαzλ−1

(
2π

d

)1/2

− α2π

dλ2

]
exp

[
(iαλ−1 − βλ)

(
2π

d

)1/2

∂z

]
(59)

where α, β are integers in Zd . Acting with this operator on the state |f 〉〉 of equation (48)
represented by the analytic function f (z) of equation (50), we get

D(α, β)f (z) = π−1/4 exp

[
iαzλ−1

(
2π

d

)1/2

− α2π

dλ2
− 21/2αβπ i

d

]

×
d−1∑
m=0

fm�3

[
πm

d
− z

λ

( π

2d

)1/2
− απ i

dλ
+

βπ

d
; i

dλ2

]
. (60)
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5.3. General transformations

We have seen in equation (16) that an arbitrary operator � can be expanded in terms of
displacement operators and using this we can express � as

� = d−1
d−1∑

α,β=0

ω(−2−1/2αβ)W̃�(−α,−β)

× exp

[
iαzλ−1

(
2π

d

)1/2

− α2π

dλ2

]
exp

[
(iαλ−1 − βλ)

(
2π

d

)1/2

∂z

]
. (61)

Alternatively, the operator � = ∑
m,n �mn|X;m〉〉〈〈X; n| can be represented with the

kernel

�(z, ζ ∗) ≡ NC(ζ )1/2NC(z)1/2λ2 exp
(
− i

2
zI z +

i

2
ζI ζ

∗
)

〈〈z∗|�|ζ ∗〉〉 (62)

= π−1/2d−1
d−1∑

m,n=0

�mn�3

[
πm

d
− z

λ

( π

2d

)1/2
; i

dλ2

]

× �3

[
πn

d
− ζ ∗

λ

( π

2d

)1/2
; i

dλ2

]
(63)

and we easily prove that

�|f 〉〉 → (2πd)−1/2λ−1
∫

S

d2ζ exp(−ζI
∗)�(z, ζ ∗)f (ζ ). (64)

It is easily seen that

�[z + (2πd)−1/2λα, ζ ∗ + (2πd)−1/2λβ] = �[z, ζ ∗]

�[z + i(2πd)−1/2λ−1α, ζ ∗] = �[z, ζ ∗] exp

[
πd

λ2
α2 − i(2πd)1/2zαλ−1

]
�[z, ζ ∗ + i(2πd)−1/2λ−1β] = �[z, ζ ∗] exp

[
πd

λ2
β2 − i(2πd)1/2ζ ∗βλ−1

] (65)

where α and β are integers. As an example, we consider the displacement operator X and find
that

X(z, ζ ∗) =
(

d

2π

)1/2

exp

[
−1

4
z2 − 1

4
ζ ∗2 − 1

2
zζ ∗ +

( π

2d

)1/2
(z − ζ ∗) − π

2d

]

×�3

[
π i

2
− (ζ ∗ − z)λi

(
πd

8

)1/2

; idλ2

2

]

×�3

{
[5 + 3(−1)d ]−1/2[

√
2π − (πd)1/2(z + ζ ∗)λ−1]; 4id

[5 + 3(−1)d ]λ2

}
.

(66)

6. Zeros of the analytic representation and their physical meaning

If z0 is a zero of the analytic representation f (z), then equation (50) shows that the coherent
state |z0〉〉 is orthogonal to the state |f 〉〉.
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Figure 1. The zeros within a cell of the coherent states |0〉〉 (circles) and |1 + i〉〉 (triangles) for the
case d = 4.

Using the periodicity of equation (51) we easily prove that

1

2π i

∮
�

f ′(z)
f (z)

dz = d, (67)

where � is the boundary of the cell S. The above integral is in general equal to the number of
zeros minus the number of poles of the function f (z) inside �. Since our functions have no
poles, we conclude that the analytic representation of any state has exactly d zeros in the square
S (zeros will be counted with their multiplicities). The area of S is 2πd, and therefore there is
an average of one zero per 2π area of the complex plane, in this analytic representation. As
an example we show in figure 1 the zeros of the coherent states |0〉〉 and |1 + i〉〉 for the case
d = 4.

A direct consequence of this result is the fact that any set of d + 1 coherent states in the
cell S is at least complete. Indeed if it is not complete, then there exists some state which is
orthogonal to all these coherent states. But such a state would have d + 1 zeros, which is not
possible. A set of d + 1 states in a d-dimensional space which is at least complete is in fact
overcomplete; in the sense that there exist a state which we can take out and be left with a
complete set of d states. We note that if we take out an arbitrary state we might be left with an
undercomplete set of d states.

A set of d − 1 coherent states is clearly undercomplete, because our Hilbert space is d
dimensional.

A set of d distinct coherent states {|zi〉〉; i = 1, . . . , d} will be complete or undercomplete
depending on whether it violates or satisfies the constraint

d∑
i=1

zi =
(π

2

)1/2
d3/2(λ + iλ−1) + (2πd)1/2(Mλ + iNλ−1), (68)

where M,N are integers. In order to prove this we use the periodicity of equation (51) to
prove that

1

2π i

∮
�

zf ′(z)
f (z)

dz =
(π

2

)1/2
d3/2(λ + iλ−1) + (2πd)1/2(Mλ + iNλ−1). (69)
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The above integral is in general equal to the sum of zeros minus the sum of poles (with the
multiplicities taken into account) of the function f (z) inside �. Since our functions have
no poles, we conclude that the sum of zeros is equal to the right-hand side of equation (69).
Equations (67) and (69) have also been given in [13].

If the d coherent states considered violate equation (68), then clearly they form a complete
set because there exists no state which is orthogonal to all of them. If however they do satisfy
the constraint (68), then there exists a state which is orthogonal to all of them. To construct
such a state we simply take the first d − 1 coherent states {|z1〉〉, . . . , |zd−1〉〉} (which form an
undercomplete set because the space is d dimensional) and find a state |g〉〉 which is orthogonal
to them. The corresponding analytic function g(z) will have d zeros which will be the
z1, . . . , zd−1 and an extra one which has to obey the constraint (68) and therefore has to be zd .
Therefore |g〉〉 will be orthogonal to |zd〉〉 also, and consequently the set of {|z1〉〉, . . . , |zd〉〉} is
undercomplete.

7. Construction of the analytic representation of a state from its zeros

We have proved in the last section that for an arbitrary state |f 〉〉, the analytic representation
f (z) has d zeros in the cell S of equation (41). In this section we assume that the zeros
z1, z2, . . . , zd in the cell S are given (subject to the constraint of equation (68)) and we will
construct the function f (z). We note that some of the zeros might be equal to each other.

We first consider the product

Q(z) =
d∏

j=1

�3

[
(z − zj + w)

(
π

2d

)1/2

λ−1; i

λ2

]
; w =

(
πd

2

)1/2

(λ + λ−1i). (70)

It is easily seen that Q(z) has the given zeros. The ratio f (z)/Q(z) is entire function with no
zeros and therefore it is the exponential of an entire function:

f (z) = Q(z) exp(P (z)). (71)

Taking into account the periodicity constraints of equation (51) we conclude that

P [z + (2πd)1/2λ] = P(z) + i2πK

P [z + i(2πd)1/2λ−1] = P(z) +
2πN

λ2
+ i2π�.

(72)

Here N is the integer entering the constraint of equation (68); and K, � are arbitrary integers.
We have explained earlier that the growth of f (z) is of order 2. The order of Q(z) is 2;
therefore, the P(z) is a polynomial of maximum possible degree 2. Equation (72) shows that
in fact P(z) is

P(z) = −
(

2π

d

)1/2

Nλ−1zi + C, (73)

where C is a constant. Therefore,

f (z) = C ′ exp

[
−

(
2π

d

)1/2

Nλ−1zi

]
Q(z), (74)

where the constant C ′ is determined by the normalization condition.
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8. Discussion

The harmonic oscillator formalism with phase space R × R has been studied extensively in
the literature. Equally interesting is quantum mechanics on a circle, with phase space S × Z

[22, 23]; and finite quantum systems, with phase space Zd × Zd . Most of the results for
physical systems on a circle or circular lattice (which is the case here) are intimatelly related
to theta functions; and well-known mathematical results for theta functions can be used to
derive interesting physical results for these systems.

In this paper we have introduced the transform of equation (17) between functions in R

and functions in Zd . The aim is to create a harmonic oscillator-like formalism in the context
of finite systems. We have defined the analogue of number states for finite quantum systems
in equation (25); and of coherent states in equation (30). The properties of these states have
been discussed.

Using the coherent states we have defined the analytic representation of equation (50) in
terms of theta functions. In this language we have studied displacements and the Heisenberg–
Weyl group; and also more general transformations. Symplectic transformations are also
important for these systems. Especially in the case where d is the power of a prime number,
there are strong results (e.g., [9]). Further work is needed in order to express these results in
the language of analytic representations used in this paper.

The analytic functions (50) have growth of order 2 and they have exactly d zeros in each
cell S. If the zeros are given we can construct the analytic representation of the state using
equation (74). Therefore we can describe the time evolution of a system through the paths of
the d zeros of its analytic representation, in the cell S.

Based on the theory of zeros of analytic functions we have shown that a set of d + 1
coherent states in the cell S is overcomplete; and a set of d−1 coherent states is undercomplete.
A set of d coherent states in the cell S is complete if the constraint of equation (68) is violated;
and undercomplete if the constraint of equation (68) is obeyed. These results are analogous
to the ‘theory of von Neumann lattice’ in our context of finite quantum systems.

Our results use the powerful techniques associated with analytic representations in the
context of finite systems.

Appendix A

The normalization factor appearing in equation (17) is given by

N =
d−1∑
m=0

{ ∞∑
w=−∞

ψ∗
[
x =

(
2π

d

)1/2

λ(m + dw)

]}{ ∞∑
w′=−∞

ψ

[
x =

(
2π

d

)1/2

λ(m + dw′)

]}
.

(A.1)

The normalization factor appearing in equation (19) is given by

N ′ =
d−1∑
m=0

{ ∞∑
w=−∞

ψ̃∗
[
p =

(
2π

d

)1/2

λ−1(m + dw)

]}

×
{ ∞∑

w′=−∞
ψ̃

[
p =

(
2π

d

)1/2

λ−1(m + dw′)

]}
. (A.2)

We insert equation (18) into equation (A.2), and use equations (21) and (22) to prove that
N ′ = λ2N .
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Appendix B

In this appendix we use the full Zak transform to introduce a family of d-dimensional Hilbert
space H(σ1, σ2) (with H ≡ H(0, 0)). We generalize equation (17) into

ψm(σ1, σ2) = [N (σ1, σ2)]
−1/2

∞∑
w=−∞

exp(−2π i σ1w)ψ

[(
2π

d

)1/2

λ(m + σ2 + dw)

]
, (B.1)

where N (σ1, σ2) is a normalization factor. The Hilbert space H(σ1, σ2) is spanned by the
states corresponding to ψm(σ1, σ2). These spaces and the corresponding twisted boundary
conditions of the wavefunctions have been studied in [24]. The Hilbert space H is isomorphic
to the direct integral of all the H(σ1, σ2) (with 0 � σ1 < 1, 0 � σ2 < 1). In this case,
equation (17) can be inverted as follows:

ψ

[
x =

(
2π

d

)1/2

λ(m + σ2 + dw)

]
=

∫ 1

0
[N (σ1, σ2)]

1/2ψm(σ1, σ2) exp(2π i σ1w) dσ1.

(B.2)

The formalism of this paper is valid for the space H ≡ H(0, 0).
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